Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2685, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792646

RESUMO

Electrically evoked compound action potentials (ECAPs) generated in the subthalamic nucleus (STN) contain features that may be useful for titrating deep brain stimulation (DBS) therapy for Parkinson's disease. Delivering a strong therapeutic effect with DBS therapies, however, relies on selectively targeting neural pathways to avoid inducing side effects. In this study, we investigated the spatiotemporal features of ECAPs in and around the STN across parameter sweeps of stimulation current amplitude, pulse width, and electrode configuration, and used a linear classifier of ECAP responses to predict electrode location. Four non-human primates were implanted unilaterally with either a directional (n = 3) or non-directional (n = 1) DBS lead targeting the sensorimotor STN. ECAP responses were characterized by primary features (within 1.6 ms after a stimulus pulse) and secondary features (between 1.6 and 7.4 ms after a stimulus pulse). Using these features, a linear classifier was able to accurately differentiate electrodes within the STN versus dorsal to the STN in all four subjects. ECAP responses varied systematically with recording and stimulating electrode locations, which provides a subject-specific neuroanatomical basis for selecting electrode configurations in the treatment of Parkinson's disease with DBS therapy.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Animais , Núcleo Subtalâmico/fisiologia , Doença de Parkinson/terapia , Potenciais Evocados/fisiologia , Potenciais de Ação
2.
Front Neurol ; 13: 1041934, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582611

RESUMO

Objective: Gait dysfunction is one of the most difficult motor signs to treat in patients with Parkinson's disease (PD). Understanding its pathophysiology and developing more effective therapies for parkinsonian gait dysfunction will require preclinical studies that can quantitatively and objectively assess the spatial and temporal features of gait. Design: We developed a novel system for measuring volitional, naturalistic gait patterns in non-human primates, and then applied the approach to characterize the progression of parkinsonian gait dysfunction across a sequence of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatments that allowed for intrasubject comparisons across mild, moderate, and severe stages. Results: Parkinsonian gait dysfunction was characterized across treatment levels by a slower stride speed, increased time in both the stance and swing phase of the stride cycle, and decreased cadence that progressively worsened with overall parkinsonian severity. In contrast, decreased stride length occurred most notably in the moderate to severe parkinsonian state. Conclusion: The results suggest that mild parkinsonism in the primate model of PD starts with temporal gait deficits, whereas spatial gait deficits manifest after reaching a more severe parkinsonian state overall. This study provides important context for preclinical studies in non-human primates studying the neurophysiology of and treatments for parkinsonian gait.

3.
J Neural Eng ; 18(4)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33906174

RESUMO

Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease.Approach.Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).Results.Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.Significance.These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...